-
大数据如何改变制造业
所属栏目:[大数据] 日期:2022-06-08 热度:132
区块链如何改变制造业 由于该领域的独家技术突破,制造业正处于一场革命之中。 制造业的大数据正在实现明智的战略,并制定未来的路线图。 制造业是在过去几十年里经历了巨大变化的行业之一。除了简单地自动化相关流程之外,制造业还利用技术实现各种其他目[详细]
-
如何使云原生运维化繁为简
所属栏目:[大数据] 日期:2022-06-08 热度:141
云计算带来了集约化、效率、弹性与业务敏捷的同时,对云上运维提出了前所未有的挑战。如何面对新技术趋势的挑战,构建面向云时代的智能监测平台,让云上应用获得更好的保障,是如今摆在每一个企业面前的一道难题。 在日前的【TTalk】系列活动第八期中,51C[详细]
-
如何借助Python创建机器学习模型
所属栏目:[大数据] 日期:2022-06-08 热度:99
你是否会遇到这样的场景,当你训练了一个新模型,有时你不想费心编写 Flask Code(Python的web 框架)或者将模型容器化并在 Docker 中运行它,就想通过 API 立即使用这个模型? 如果你有这个需求,你肯定想了解MLServer。它是一个基于Python的推理服务器,[详细]
-
转向未来的AI自动化测试工具
所属栏目:[大数据] 日期:2022-06-08 热度:60
近年来,自动化测试已经发生了重大的迭代。它在很大程度上协助QA团队减少了人为错误的可能。虽然目前有许多工具可以被用于自动化测试,但合适的工具一直是自动化测试成败与否的关键。同时,随着人工智能、机器学习和神经网络在各个领域的广泛运用,面向人[详细]
-
微型机器学习有望让深度学习嵌入微处理器
所属栏目:[大数据] 日期:2022-06-08 热度:164
深度学习模型最初的成功归功于拥有大量内存和GPU集群的大型服务器。深度学习的前景催生了一个为深度神经网络提供云计算服务的行业。因此,在几乎无限的云资源上运行的大型神经网络变得非常流行,这对于具有充足预算的科技公司尤其如此。 但与此同时,近年[详细]
-
人工智能平台计划中的质量工程设计
所属栏目:[大数据] 日期:2022-06-08 热度:134
我们正处在人工智能的黄金时代。人工智能方案的采用使得企业更具创造性、竞争力和快速响应能力。软件即服务(software-as-a-service,SaaS)模式,加上云技术的进步,使软件生产和消费过程越来越成熟。 普遍存在的一个事实是,大多数组织更喜欢购买现成的[详细]
-
开启元宇宙的数字人之行
所属栏目:[大数据] 日期:2022-06-08 热度:82
作为构建元宇宙内容的基石,数字人是最早可落地且可持续发展的元宇宙细分成熟场景,目前,虚拟偶像、电商带货、电视主持、虚拟主播等商业应用已被大众认可。在元宇宙世界中,最核心的内容之一非数字人莫属,因为数字人不光是真实世界人类在元宇宙中的化身[详细]
-
使用机器学习重塑视频中的人脸
所属栏目:[大数据] 日期:2022-06-08 热度:197
来自于中、英两国的一项合作研究设计出了一种在视频中重塑面孔的新方法。该技术可以扩大和缩小面部结构,同时还具有高度一致性,并且没有人工修剪的痕迹 一般而言,这种面部结构的转化通过传统的 CGI 方法来实现,而传统的 CGI 方法依托详细且昂贵的运动封[详细]
-
由于智能数据库的自助式机器学习
所属栏目:[大数据] 日期:2022-06-08 热度:61
由于智能数据库的自助式机器学习 1.如何成为一个IDO? IDO(insight-driven organization)指洞察力驱动(以信息为导向)的组织。要成为一个IDO,首先需要数据以及操作和分析数据的工具;其次是具有适当经验的数据分析师或数据科学家;最后还需要找到一种技术或者[详细]
-
元宇宙在艺术领域的探索
所属栏目:[大数据] 日期:2022-06-08 热度:99
在元宇宙概念火爆的当下,各行业均开始了在这片富地中的探索。而在诸多行业之中,艺术行业与元宇宙的融合互促效果尤为明显。在不久前MetaCon元宇宙技术大会上,触角科技有限公司联合创始人、大有不言文化有限公司创始人谷强为我们带来了《元宇宙在艺术行业[详细]
-
美团图神经网络训练架构的实践和探索
所属栏目:[大数据] 日期:2022-06-08 热度:96
美团搜索与NLP团队在图神经网络的长期落地实践中,基于业务实际场景,自主设计研发了图神经网络框架Tulong,以及配套的图学习平台,提升了模型的规模和迭代效率。 1. 前言 万物之间皆有联系。图作为一种通用的数据结构,可以很好地描述实体与实体之间的关[详细]
-
Flink 在 B 站的多元化探索与践行
所属栏目:[大数据] 日期:2022-05-21 热度:100
本文整理自哔哩哔哩基础架构部资深研发工程师张杨在 Flink Forward Asia 2021 平台建设专场的演讲。主要内容包括: 1.1 基础功能完善 在平台的基础功能方面,我们做了很多新的功能和优化。其中两个重点的是支持 Kafka 的动态 sink 和任务提交引擎的优化。[详细]
-
数据剖析的几个误区
所属栏目:[大数据] 日期:2022-05-21 热度:117
在IT领域,炒作越大,误解越多,数据分析也不例外。分析是当今信息技术最热门的方面之一,可以带来巨大的商业收益,但错误的观念可能会阻碍分析能力顺利和及时的流转,从而使商业用户和最终客户受益。当企业创建或扩大他们的分析战略时,以下是他们可能要[详细]
-
数据管理的现实和商业智能的将来
所属栏目:[大数据] 日期:2022-05-21 热度:80
无论企业在哪个行业工作,拥有多少员工,或者是否面向消费者、企业、私营部门或公共部门进行营销,都不再重要。无论来自哪里,数据和分析都是日常现实。大多数企业定期收到的数据量是天文数字。全球的IT部门都在努力实施工具和实践,对他们收到的信息进行[详细]
-
行业大数据有什么安全风险
所属栏目:[大数据] 日期:2022-05-21 热度:125
网际空间安全面临的威胁越来越多样化。移动网络、云和虚拟化、物 联网、工控系统等技术领域的快速发展,使得保护对象和攻击路径都变得 更加复杂。而攻击来源也从早期的个人黑客变为犯罪团伙、政治势力、网 络部队等更严密的组织。甚至大数据技术本身也被攻[详细]
-
区块链在 数据为王 的年代扮演了什么角色?
所属栏目:[大数据] 日期:2022-05-21 热度:170
在当今数据为王的时代,数据作为企业、组织、乃至国家的战略资产,其重要性不言而喻。今天老蔡想和大家一起探讨下以下几方面的问题:1. 数据管理的全生命周期;2. 传统数据治理的弊端;3. 当代信息技术间的相互关系;以及4. 最后抛出区块链技术在数据治理[详细]
-
数据在网络中是怎样传输的
所属栏目:[大数据] 日期:2022-05-21 热度:109
整个请求交互过程分为了几个部分,首先最上层就是应用程序,接着往下是 Socket 库。 再下面就是操作系统的内部了,这里面就包括了协议栈,协议栈上半部分为 TCP 和 UDP ,它们都是负责数据的收发。 只是一个需要 连接,一个不需要连接可以直接收发数据,这两[详细]
-
详解数据管理发展的五个阶层
所属栏目:[大数据] 日期:2022-05-21 热度:178
近年来现代化企业都在改革现有的数据管理体系,优化原有的基于策略定义的数据管理模型,逐渐开始使用基于数据使用行为的数据管理方式。以确保数据不仅可用,而且保持活性,从而始终让数据资产充分发挥本身价值。 从历史的视角看,数据管理是一个不断进化发[详细]
-
终于有人把元数据说明白了
所属栏目:[大数据] 日期:2022-05-21 热度:197
元数据管理工具是企业数据治理的重要抓手,它可以帮助企业解决数据查找难、理解难等问题,促进数据的集成和共享。 一、系统架构 从应用角度看,元数据管理平台可分为数据源层、元数据采集层、元数据管理层、元数据应用层四层架构,如图1所示。 1. 数据源层[详细]
-
谈谈大数据技术现状和分类
所属栏目:[大数据] 日期:2022-05-21 热度:149
随着社交媒体、物联网和多媒体应用等各种来源产生的海量数据的诞生,大数据已经成为一个重要的研究领域。大数据在许多决策和预测领域发挥了关键作用,如推荐系统、商业分析、医疗保[详细]
-
大数据在智慧城市建设中有什么应用
所属栏目:[大数据] 日期:2022-05-21 热度:183
智慧城市是以为民服务全程全时、城市治理高效有序、数据开放共融共享、经济发展绿色开源、网络空间安全清朗为主要目标,通过体系规划、信息主导、改革创新,推进新一代信息技术与城市现代化深度融合、迭代演进,实现国家与城市协调发展的新生态。 智慧能源[详细]
-
数据分析和数据科学的几大不一样之处
所属栏目:[大数据] 日期:2022-05-21 热度:195
在大数据的世界里,您可能会经常听到两个词语:数据科学(Data Science)和数据分析(Data Analytics)。它们虽然从字面上有些相似,但是在大数据的背景下它们强调的是不同的能力和技能方面。下面,我将从职业决策与规划的角度,和您讨论两者之间的差异。 一、[详细]
-
您是不是在楼宇安全中使用大数据?
所属栏目:[大数据] 日期:2022-05-20 热度:93
谈到大数据,物理安全有点姗姗来迟。企业已将各种数据源用于多种目的,例如向消费者进行营销(如谷歌、亚马逊和 Facebook)、提高运输效率(如包裹跟踪、航班调度和自动驾驶汽车),以及改善医疗保健服务(如、病历管理、人工智能辅助药物开发和患者健康风险评[详细]
-
2022年企业需要关注的12项数据和分析趋向
所属栏目:[大数据] 日期:2022-05-20 热度:102
数据和分析领导者需要在自适应人工智能(AI)系统、数据共享和数据编织等趋势的基础上推动新增长、韧性和创新。 趋势一:自适应AI系统(Adaptive AI systems) 同时,构建和管理自适应AI系统需要采用AI工程实践。AI工程能够通过编排和优化应用来适应、抵御或吸[详细]
-
Gartner公布2022年数据分析十二大趋势
所属栏目:[大数据] 日期:2022-05-20 热度:192
关于数据的几项事实是:如今国内数据利用率仍然很低,企业数据孤岛问题显著,但数据分享成为更加主流的趋势,数据外泄的风险性愈发低于分享赢得的价值...... 对于企业来说,四种趋势和数据息息相关,发挥数据的潜在价值将带来新机会。 AI工程化是Gartner在[详细]